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Abstract

The Atlantic Forest encompasses a wide range of envi-
ronmental and geographical gradients with high ende-
mism and species diversity among several taxonomic
groups, including bees. Environmental heterogeneity is a
determining factor for species diversity, as environments
with greater heterogeneity tend to offer a greater variety
of conditions, thus supporting higher species richness.
However, bee richness patterns and their relationship with
environmental heterogeneity in the Atlantic Forest remain
underexplored. In this study, we aimed to describe the bee
diversity patterns and investigate how different compo-
nents of environmental heterogeneity—specifically tem-
perature seasonality, topographic and geomorphic hetero-
geneity, and stream density—influence species richness,
both for the entire biome and within each ecoregion. To
do so, we modeled and estimated the distribution of 466
bee species. Relationships between bee species richness
and environmental heterogeneity variables were analyzed
using Generalized Linear Models, variable importance,
and partial dependence curves. We found that the highest
richness was in the southwestern regions of the Atlantic
Forest, particularly in the Serra do Mar Coastal Forests and
Araucaria Moist Forests. The most important variables
positively related to species richness were temperature
seasonality, followed by topographic and geomorphic het-
erogeneity, whereas stream density showed the lowest im-
portance. At the ecoregion level, temperature seasonality
was the mostimportant variable for 9 of the 11 ecoregions,
followed by topographic and geomorphic heterogeneity. In
ecoregions with the highest bee richness, environmental

heterogeneity showed a low explanatory power. Notably,
the relationships between the environmental heterogene-
ity variables and species richness varied across ecore-
gions. Our findings highlight the significant role of envi-
ronmental factors in shaping bee species richness in the
Atlantic Forest at multiple scales. Furthermore, the distinct
relationship observed between environmental heterogene-
ity and species richness across ecoregions reinforces the
necessity of multi-scale diversity studies to elucidate the
unique characteristics of each ecoregion.

Highlights

+ Bee species richness in the Atlantic Forest is great-
est in the south-west and southern regions.

+ Seasonal temperature was the most important vari-
able for predicting species richness, showing a pos-
itive effect in nine of the 11 ecoregions.

+ Topographic and geomorphic heterogeneity con-
tributed significantly to species richness in certain
ecoregions.

+ Relationship between species richness and environ-
mental heterogeneity variables varied among ecore-
gions.

+ Ecoregions with higher richness were poorly ex-
plained by environmental heterogeneity, suggesting
other influencing factors.

+ Multiscale analysis reveals that different regions may
have unique species richness drivers, crucial to under-
standing species diversity in this biodiversity hotspot.
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Introduction

The Atlantic Forest biome extends across eastern Brazil,
northeastern Argentina, and eastern Paraguay. This region
exhibits a wide range of latitudinal, altitudinal, and environ-
mental gradients and comprises multiple ecoregions with
distinctive environmental attributes (Olson et al. 2001; Ba-
tista et al. 2021; Carvalho et al. 2021). The Atlantic Forest
is considered a biodiversity hotspot and is home to 2,200
vertebrate species (i.e., > 5% of the world's species; Myers
etal. 2000), of which 334 are mammals (Souza et al. 2019).
In addition, 35% of 20,000 native plant species (Faoro et al.
2015), 16% of 688 bird species, 31% of 200 reptile species,
and 60% of 280 amphibian species are endemic to the
Atlantic Forest (Mittermeier et al. 2005). This biome rep-
resents a region of high biological importance for arthro-
pods, with 724 areas of endemism identified (Hoffmeister
and Ferrari 2016). Recent studies based on DNA Barcod-
ing have revealed a great diversity of arthropod species,
many of which have not yet been cataloged (Bukowski et
al. 2022). The region exhibits remarkably high biodiversity
of eusocial insects, including bees, wasps, and termites
(Feitosa et al. 2021), with high bee endemism, particularly
in the genus Euglossa (Garraffoni et al. 2017).

The Anthophila clade comprises all bee species and
represents a highly diverse group within Apoidea (Michener
2007), with > 20,000 species described globally, whose di-
versity is reflected in the wide variation in behavior, ecology,
and distribution (Michener 2007). Bees provide important
ecosystem services, the most important of which is polli-
nation (Michener 2007; Rogers et al. 2014). This ecosys-
tem service is essential for the sexual reproduction of plant
species (Ollerton et al. 2011) and has a direct effect on the
genetic diversity of plant seeds (Ramos and Schiestl 2019).
In addition, crop pollination can be maintained exclusively
by native bees, especially if natural habitats near planta-
tions increase (Kremen et al. 2004; Ricketts et al. 2008).

Studying diversity patterns is fundamental for under-
standing the dynamics and structure of ecological com-
munities, as well as for helping manage and conserve
biodiversity (Rubene et al. 2015). These patterns are in-
fluenced by both evolutionary and ecological factors, biot-
ic and abiotic, at different spatial scales (Ricklefs 2004).
Bee diversity patterns have been studied because of their
ecological importance and pollination services (Klein et
al. 2006). Previous research has shown that bee species
diversity is influenced by a variety of biotic and abiotic fac-
tors, including availability of floral resources, habitat, inter-
actions with other species, and climatic variations (Potts
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et al. 2003; Classen et al. 2015; Escobedo-Kenefic et al.
2020). Recently, bee distribution has been mapped glob-
ally, showing a bimodal latitudinal gradient with a higher
concentration of species at mid-latitudes than at low lat-
itudes (Orr et al. 2021). Although there have been several
studies on animal and plant diversity in the Atlantic Forest
(Jenkins et al. 2015; Souza et al. 2019), there is still a gap
in the diversity patterns of bees at broad scales and the
environmental factors related to those patterns.
Environmental heterogeneity is defined as the variation
in biotic (e.g., vegetation structure) and abiotic (e.g., topog-
raphy) environmental characteristics within a given area
(Maliniemi et al. 2024). Environmental heterogeneity plays
a key role in shaping biodiversity patterns by promoting
niche differentiation and reducing interspecific competition
(Whalen et al. 2016; Xu et al. 2016; Tukiainen et al. 2017).
Variations in land cover, vegetation, climate, soil, and topog-
raphy strongly correlate with species richness across taxa
and spatial scales (Dufour et al. 2006; Stein et al. 2014; Wan
et al. 2023). Highly heterogeneous environments support
greater species diversity and offer varied conditions and
resources for different niches and refuges during environ-
mental change (Stein and Kreft 2015). Furthermore, from
an evolutionary perspective, heterogeneous environments
can induce allopatric speciation, restrict gene flow, and fos-
ter local adaptation (Dool et al. 2022). Some studies in the
Atlantic Forest have explored the relationship between dif-
ferent aspects of species diversity and environmental het-
erogeneity (Stevens 2013; Weber and Céceres 2018; Delci-
ellos et al. 2022). However, these studies primarily focused
on vertebrates and plants using topographic heterogeneity
as the main variable. As such, the influence of environmen-
tal heterogeneity on bee diversity remains to be evaluated,
especially in particularly diverse regions such as the Atlan-
tic Forest and considering multiple environmental variables.
Bees are sensitive to environmental changes and have
specific requirements for foraging, gathering resources,
and maintaining their nests (Klein et al. 2017; Burdine and
McCluney 2019). Therefore, environmental heterogeneity
is expected to have a positive relationship with bee diver-
sity because of the variety of environments and resources,
thus supporting greater species richness. In macroeco-
logical studies, environmental heterogeneity can be mea-
sured using multiple metrics (Stein and Kreft 2015). For ex-
ample, heterogeneity in soil chemical properties (Xu et al.
2016), geomorphic heterogeneity, or water richness (Tuki-
ainen et al. 2017). Due to the longitudinal, latitudinal, and
climatic amplitudes of the Atlantic Forest, different metrics
of environmental heterogeneity are expected to affect the
patterns of bee species richness. Temperature seasonal-
ity indicates variations in average monthly temperatures
yearly (O'Donnell and Ignizio 2012), which can affect plant
phenology, resource availability timing, and bee thermal
limits. Topographic heterogeneity refers to elevation vari-
ability; greater variation indicates greater topographic
heterogeneity (Amatulli et al. 2020). Additionally, geomor-
phic heterogeneity refers to the variation of topographic
features measured by classes of geomorphological forms
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(Amatulli et al. 2020). High topographic and geomorphic
heterogeneity creates diverse microclimates and environ-
mental conditions. Areas with greater topographic hetero-
geneity are expected to have higher species richness, as
such heterogeneity fosters different conditions for bees
with different ecological requirements. Stream density
represents the number of potential watercourses in an
area and is associated with humidity and riparian habitats
(Keeton et al. 2007). This variable is important for certain
bee species because of the water needed for their survival
and nest temperature control (Kiihnholz and Seeley 1997).
Thus, temperature seasonality, topographic and geomor-
phic heterogeneity, and stream density are expected to
have a positive relationship with bee species richness.
The relationship between a response variable (e.g., spe-
cies richness) and predictor variables (e.g., environmental
heterogeneity) can vary significantly at different temporal
or spatial scales, a phenomenon known as nonstation-
arity (Fortin and Dale 2005). Nonstationarity implies that
ecological patterns and processes, and their relationships
with different variables, are not constant over time or
space (Rollinson et al. 2021). Because of the broad geo-
graphical and environmental extent of the Atlantic Forest,
it is expected that there will be nonstationarity between
bee richness and different components of environmental
heterogeneity. In other words, these relationships could
change between biome and different ecoregion scales,
making it pertinent to explore these relationships at differ-
ent levels separately (i.e., at the global level of the biome
and within each ecoregion). In this study, we aimed to de-
scribe the patterns of native bee diversity in the Atlantic
Forest and investigate how the different components of
environmental heterogeneity influence bee richness in the
Atlantic Forest on a global scale and in each ecoregion.

Material and methods

Study area

The Atlantic Forest extends along the entire eastern coast
of Brazil, from Rio Grande do Norte to Rio Grande do Sul,
and through the coastal and continental areas to southern
Brazil, eastern Paraguay, and southwestern Argentina (Ri-
beiro et al. 2009; Muylaert et al. 2018). The Atlantic Forest
is separated from the Amazon Rainforest by a corridor
of seasonally dry forests and savannas such as semiar-
id Caatinga (northeastern Brazil), Cerrado (central Bra-
zil), and Chaco (Paraguay, Argentina, and Bolivia) (Prado
and Gibbs 1993). It contains a unique set of ecosystems
that originally comprised > 1.5 million km? (Morellato and
Haddad 2000). The biome has a wide latitude range (from
5°8'N to 33°8'S), an altitude between 0-2,200 m a.s.l., rain-
fall between 800-4,000 mm/year, and an average annual
temperature ranging from 5-25 °C (Stehmann et al. 2009).

We used the integrative boundary of the Atlantic Forest
(Muylaert et al. 2018) because it covers a more inclusive
area, considering the transition regions with other biomes
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such as Cerrado and Caatinga, as well as representing
portions of the Atlantic Forest for other countries, such as
Argentina and Paraguay. We clipped the boundaries of the
world’s terrestrial ecoregions from the polygon as the inte-
grating boundary of the Atlantic Forest (https:/github.com/
LEEClab/ATLANTIC-limits) (Dinerstein et al. 2017, https:/
ecoregions.appspot.com). Initially, 19 ecoregions were listed
within the Atlantic Forest boundaries; however, many of them
were represented marginally or with small extensions, which
could make it difficult to analyze them separately (Suppl.
material 1: table S1, fig. S1). Polygons of marginal ecore-
gions (i.e., < 3,000 km? equivalent to 120 cells) were joined
to the largest and closest ecoregions. A total of 11 ecore-
gions were analyzed: Araucaria Moist Forests, Bahia Coastal
Forests, Bahia Inland Forests, Brazilian Atlantic Dry Forests,
Caatinga, Campos Rupestres Montane Savanna, Cerrado,
Pernambuco Coastal Forests, Serra do Mar Coastal Forests,
Upper Parana Atlantic Forests, and Uruguayan Savanna.

Species list and occurrences

To construct the species list for the Atlantic Forest, we fol-
lowed two stages. First, a list of species occurring in the At-
lantic Forest was generated from occurrences sourced by
Dorey et al. (2023). This occurrence dataset provides bees
occurrences worldwide compiled, integrated, and cleaned
from Atlas of Living Australia (ALA, https://www.ala.org.
au), Global Biodiversity Information Facility (GBIF, https:/
www.gbif.org), Symbiota Collections of Arthropods Net-
work (SCAN, https://scan-bugs.org/portal/), Integrated Dig-
itized Biocollections (iDigBio, https://www.idigbio.org), and
the United States Geological Survey (USGS, https:/www.
usgs.gov) (Dorey et al. 2023). We integrated the Dorey et
al. (2023) database with SpeciesLink (https://specieslink.
net), which is a biodiversity information portal from Brazil.

The species list included all bee species with at least
one occurrence in the Atlantic Forest. We then removed
species without distribution in the Atlantic Forest. We
used the Taxonomic Catalog of Brazilian Fauna (https:/
fauna.jbrj.gov.br/) and the Taxonomic Catalog of Brazilian
Fauna and Moure Catalog (https://moure.cria.org.br/) as
species origin sources. The scientific names were revised
according to the Taxonomic Catalog of Brazilian Fauna
and Moure Catalog. The raw occurrence data listed 770
species names, but after scientific name correction and
selection of those species native to the study area, 564 na-
tive bee species to the Atlantic Forest were listed. Species
with only one occurrence (n = 74) were eliminated, leaving
490 species for distribution modeling.

We performed a spatial cleaning that consisted of re-
moving occurrences with invalid coordinates, duplicated
coordinates, and georeferenced in centroids of municipal-
ities, provinces/states, and countries. For data integration
and cleaning, we used the R packages bdc (Ribeiro et al.
2022) and CoordinateCleaner (Zizka et al. 2019). For each
species, we checked whether the occurrences were within
the species’ natural distribution using the Moure Catalog
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as a source of species distribution. Occurrences georefer-
enced outside of the informed distribution were removed
manually in a GIS environment using the program QGIS v.
3.38.0 (https://www.qgis.org/). Raw occurrence database
contained 240,062 occurrences, which were reduced to
16,542 after cleaning.

Occurrences compiled from large databases generally
have spatial bias, with a higher density of points close to
human infrastructure (Stolar and Nielsen 2015). This bias
can negatively affect the predictions of species distribu-
tion models (Baker et al. 2022). To correct sampling bias,
we used environmental filtering (Varela et al. 2014). As
this method is sensitive to the number of classes used
to partition the environmental space (i.e., binds), for each
species we tested 4, 6, 8, 10, and 12 classes and selected
the filter with the lowest spatial autocorrelation (as mea-
sured by Moran’s |) and the largest number of retained oc-
currence records (Velazco et al. 2021) 11,404 occurrenc-
es were retained after this process.

Species distribution models and species
richness maps

Environmental variables

Variation in temperature, humidity, and precipitation pat-
terns can directly influence species behavior and resource
availability across an environment, thus shaping the geo-
graphic distribution of species (Cortopassi-Laurino et al.
2007). Species distribution models were built using biocli-
matic variables from Chelsa v2.1 (https://chelsa-climate.
org) (Karger et al. 2017) at 1 km. Of the 19 bioclimatic
variables, we selected 11 that were ecologically related to
bee distribution (Suppl. material 1: table S2). We also used
the 1 km resolution elevation from SRTM (https://srtm.
csi.cgiar.org). The extent of the variables ranged from
the northern border of the United States to the southern
extremes of Argentina and Chile. All variables were resa-
mpled to a resolution of 5 km. A Pearson’s correlation ma-
trix for the full range of environmental variables revealed
significant collinearity among many of them (Suppl. ma-
terial 1: fig. S2). To address multicollinearity and reduce
the number of predictor variables used for modeling, we
applied Principal Component Analysis (PCA) using raster
cells from the training area of each species (see below).
The PCAs were calculated based on a correlation matrix,
and eigenvectors were used to predict principal compo-
nents used as predictor variables in species distribution
models. We selected a total of principal components that
explained 95% of the total variance in the original envi-
ronmental variables (De Marco and Nébrega 2018). Thus,
four, five, and six principal components were used for 282,
206, and two species, respectively.

Because the amount of occurrence data affects the
performance of Species Distribution Models (SDM),
and there are different techniques for dealing with lack
of data, we defined three modeling protocols: one for
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species with = 15 occurrences (n = 183 species), another
for species with between 5 and 14 occurrences (n = 156),
and another for those with between 2 and 4 occurrences
(n = 151). Species with only one occurrence were not in-
cluded in our analysis. For the first and second protocols,
the SDM training area was defined as delimited by ecore-
gions where a species had at least one presence. We
used Dinerstein et al. (2017; https://ecoregions.appspot.
com) as the ecoregions polygon source for the 11 ecore-
gions. SDM were constructed using flexsdm R package
(Velazco et al. 2022).

Modeling protocol for species with > 15
occurrences

No single algorithm can handle all modeling conditions,
so we used the following seven algorithms: Artificial Neu-
ral Network (NET), Boosted Regression Trees (BRT), Gen-
eralized Additive Model (GAM), Generalized Linear Mod-
el (GLM), Maximum Entropy (MAXENT, hereafter MAX),
Random Forest (RAF), Support Vector Machine (SVM),
and Gaussian Process (GAU). The NET, BRT, MAX, RAF,
and SVM algorithms have hyperparameters that can af-
fect model performance and predicted suitability patterns
(Fourcade 2021). Therefore, for these algorithms, we em-
ployed a hyperparameter optimization technique that se-
lects the best combination of hyperparameters that max-
imizes the Sorensen performance metric (Suppl. material
1: table S3). The consensus was based on the median of
the environmental suitability values because it is less sen-
sitive to outliers (Rose et al. 2024).

Modeling protocol for species with 5-15
occurrences

For species with 5—-15 occurrences, the Ensemble of Small
Models (ESM) approach was used. This technique is suit-
able for building models for species with few occurrences
and consists of creating bivariate models with a combi-
nation of all pairs of predictors and subsequent consen-
sus between the bivariate models weighted by Somers’D
metric (D = 2 x (AUC - 0.5)), where AUC is the area under
the curve (Breiner et al. 2015). The ESMs were construct-
ed using the same algorithms as in the previous protocol,
however, the default algorithm hyperparameters were
used (Velazco et al. 2022). As with SDM, the final models
consisted of a consensus model based on the median.

Modeling protocol for species with 2-4
occurrences

For species with 2-4 occurrences, distributions were es-
timated based on environmental similarity using Gower’s
distance for cells within a 50 km radius around the species
occurrences (Carpenter et al. 1993; Andrella et al. 2023).
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Model validation and modeling
postprocessing

The SDM and ESM were validated using k-fold and repeat-
ed k-fold cross-validation techniques, respectively, with
repetitions. Five partitions were used for SDM, and five
partitions and five repetitions were used for ESM. We used
the Inverse Mean Absolute Error ~IMAE- (threshold-in-
dependent metric) and Sorensen (Leroy et al. 2018) as
model performance metrics. Only those models with So-
rensen = 0.7 were used in the analyses. The 0.7 Sorensen
value was employed as an acceptable threshold for model
performance, as this value is widely recognized as a per-
formance cutoff for other metrics such as Area Under the
Curve (Swets 1988; Peterson et al. 2011).

When SDMs are projected over large geographical ex-
tents, models tend to predict high suitability areas outside
the species’ current range, potentially affecting diversity
patterns (Velazco et al. 2020). To address this, we con-
strained model prediction to a region defined by a mini-
mum convex polygon based on a species presence plus
a buffer of 100 km buffer around it (Mendes et al. 2020).

Species richness map

We created a species richness map by stacking species
semi-binary models. The semi-binary models consist of
assigning zero to environmental suitability values that are
below the threshold and keeping all values above it contin-
uous (Domisch et al. 2019). This approach to building the
richness map was adopted because it reduces over-pre-
diction compared to the sum of binary models (Guille-
ra-Arroita et al. 2015). We used the threshold that max-
imizes the sum of sensitivity and specificity to produce
the semi-binary model outputs. This threshold was used
because it is little affected by the relationship between
presences and pseudo-absences (Liu et al. 2016).

Environmental heterogeneity variables and
analyses

Four environmental heterogeneity variables were explored:
topographic heterogeneity, geomorphic heterogeneity,
temperature seasonality, precipitation seasonality, and
stream density. Topographic heterogeneity was based on
a 30 m resolution digital terrain model from the R atlan-
ticr package (https://github.com/mauriciovancine/atlan-
ticr) and was calculated using the standard deviation of
the altitudinal variation of the 30 m cells contained in the
5 km resolution cells (i.e., equal to the resolution of the dis-
tribution models). For geomorphic heterogeneity, we cal-
culated the Shannon diversity of the different geomorpho-
logical features (plane, peak or summit, ridge, shoulder,
spur, slope, hollow, slope, valley, and depression) of the 90
m resolution cells contained in 5 km resolution cells. We
used Geomorpho90m as the geomorphological feature
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source (Amatulli et al. 2020). Stream density was mea-
sured by adding the number of cells identified as potential
watercourses in 5 km resolution cells. For this, we used
Strahler stream order at a 90 m resolution and considered
watercourses for cells with stream order > 3. Hydrogra-
phy90m was used as a source of the Strahler stream order
(Amatulli et al. 2022). The seasonality of temperature and
precipitation were sourced from Chelsa. Due to the high
correlation between temperature and precipitation sea-
sonality (Pearson’s correlation = -0.81), we selected the
former variable for our analysis (Suppl. material 1: fig. S3).

The relationships between species richness and dif-
ferent environmental heterogeneity variables were ana-
lyzed for 12 regions: the Atlantic Forest as a whole and 11
ecoregions. For the extent of the Atlantic Forest, we also
performed an analysis including ecoregions as a predic-
tor variable together with environmental heterogeneity to
evaluate the contribution of the ecoregion to explain the
bee richness pattern. We used multiple regressions con-
structed using Generalized Linear Models (GLM) using the
Poisson distribution family, which is suitable for discrete
response variables (i.e., species richness). Assumptions
of normality and homogeneity of the residuals were as-
sessed visually. Moran’s | correlograms were used to as-
sess the spatial autocorrelation of the residuals. To correct
it, we used a spatial filter method based on eigenvectors
(Tiefelsdorf and Griffith 2007). The SpatialFiltering function
from the R package spatialreg (Pebesma and Bivand 2023)
selects eigenvectors in a semi-parametric spatial filtering
approach to remove spatial dependence from linear mod-
els (Pebesma and Bivand 2023). These spatial filters were
used as predictor variables in the GLMs. Because the cre-
ation of environmental filters can be time-consuming, we
systematically sampled ~2200 cells while maintaining the
original resolution (i.e., 5 km) by constructing GLMs using
a sample of the cells for each analysis area. To explore the
variable importance and partial response curves estimat-
ed by the GLMs, we used the R packages spatialreg and
vip to construct Moran's | correlograms and spatial eigen-
vector filters, respectively (Greenwell and Boehmke 2020).
emmeans package was used to calculate the variable im-
portance and estimate the partial response curves (Lenth
2016). The method used to calculate variable importance
is based on the absolute value of the t-statistic, which can
vary from zero to infinity. For the response curves, we stan-
dardized the predictor variable scales to range between
0-1 and facilitate comparisons between different curves.

Temperature seasonality was used both to construct
the SDMs and to analyze the relationship between rich-
ness and environmental heterogeneity, raising concerns
about potential circularity—using the same variable in both
modeling and explanatory analyses may artificially inflate
the results. However, using one variable to model individ-
ual species distributions through SDMs is not the same
as using this same variable to model the community-lev-
el pattern that emerges from stacking several individual
modeled distributions (e.g., species richness; Ferrier and
Guisan 2006). Indeed, the importance of such a variable
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in SDMs is more related to setting the geographical space
potentially occupied by each species and thus its spatial
limits, whereas the importance of this variable for spe-
cies richness is more related to their spatial covariation
(Ferrier and Guisan 2006; Guisan and Rahbek 2011). To
assess potential circularity between predicted species
richness and environmental heterogeneity, we examined
correlations between individual species’ suitability and the
environmental heterogeneity variables. For those species
with Pearson correlation > |0.7|, we generated a richness
map to explore if those species were highly concentrated
in some region of the study area. All analyses were per-
formed in Rv.4.4.0 (R Core Team 2024).

Results

Ensemble SDM models performed well, with IMAE and So-
rensen values of 0.73 (+ 0.05) and 0.74 (+ 0.08), respectively.
Similarly, the ESMs presented a good performance, with av-
erage IMAE and Sorensen values between the algorithms of
0.63 (+0.06) and 0.74 (£ 0.11) (Suppl. material 1: fig. S4). We
excluded 24 species because of poor model performance
(i.e., Sorensen < 0.7), thus, 466 out of the 490 modeled
species were kept for further analysis. The highest species
richness (> 75 species) was found in the southwestern and
southern regions of the Atlantic Forest. These regions are
characterized by high mountainous relief, such as the Serra
do Mar Coastal Forests and eastern Araucaria Moist Forest,
as well as in the southern region of the Upper Parana Atlantic
Forest (Fig. 1, Suppl. material 1). Species richness gradually
decreases towards the east (Upper Parana Atlantic Forest)
and coastal regions of the northeast (Pernambuco Coastal
Forests). The northeastern coastal strip showed lower rich-
ness (25-50 species). In addition to the northeastern coast-
al strip, parts of the interior, especially drier areas such as
the Caatinga and inland forests of Bahia, also showed low
richness (< 25 species; Fig. 1, Suppl. material 1).

Regarding the relationship between species richness
and environmental heterogeneity, we found that the vari-
able with the greatest importance (i.e., explained vari-
ance) for the Atlantic Forest was temperature seasonality
(87.44), followed by topographic (25.7) and geomorphic
(23.6) heterogeneity, which each demonstrated similar
levels of importance. Stream density had low explanatory
power (Fig. 2). Temperature seasonality, topographic het-
erogeneity, and geomorphic heterogeneity had a positive
relationship with species richness, and this relationship
was strongest for the first of these variables (Fig. 2, Suppl.
material 1: fig. S5). When ecoregion is used in the model, it
is the variable with the highest variable importance (56.9),
followed by temperature seasonality and topographic and
geomorphic heterogeneity (Suppl. material 1: fig. S6).

When we explored the relationship between environ-
mental heterogeneity and bee richness separately for
each ecoregion, we found that the influence of environ-
mental heterogeneity on patterns of bee species richness
varied among ecoregions. Thus, temperature seasonality
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was the most important variable in nine of the 11 ecore-
gions (Fig. 3), with the highest importance values emerg-
ing for the Cerrado (97.38), Uruguayan Savanna (92.17),
and Campos Rupestres Montane Savanna (77.69). Topo-
graphic heterogeneity was a prominent predictor of bee
species richness in the Uruguayan Savanna (39.09), Up-
per Parand Atlantic Forest (33.87), and Bahia Coastal For-
est ecoregions (29.93). Geomorphic heterogeneity and
stream density were important variables in the Caatinga
(16.29 and 24.30, respectively), Cerrado (41.96, 6.16),
and Bahia Coastal Forests (11.21, 0.93). Interestingly, the
Serra do Mar Coastal Forests was the ecoregion with the
highest species richness, yet also the ecoregion in which
the environmental heterogeneity variables explained the
least variance in bee species richness (Figs 1, 3).

In addition to varying in relative importance, the direc-
tion of the relationship between different aspects of envi-
ronmental heterogeneity and bee species richness varied
among the ecoregions (Fig. 4; Suppl. material 1: fig. S7).
While temperature seasonality demonstrated a posi-
tive relationship with bee species richness in 5 of the 11
ecoregions (Upper Parana Atlantic Forests, Bahia Interior
Forests, Brazilian Atlantic Dry Forests, Cerrado, and Cam-
pos Rupestres Montane Savanna) we observed a negative
association between the two variables in 6 ecoregions (Ar-
aucaria Moist Forests, Caatinga, Pernambuco Coastal For-
ests, Serra do Mar Coastal Forests). Topographic heteroge-
neity and species richness had a positive relationship in 7
ecoregions (the Upper Parana Atlantic Forest, Bahia Coast-
al Forests, Brazilian Atlantic Dry Forests, Caatinga, Cerrado,
and the Uruguayan Savanna) and a negative relationship in
the Campos Rupestres Montane Savanna and Serra do Mar
Coastal Forests. Finally, we found that geomorphic hetero-
geneity showed a positive relationship with species rich-
ness in the Bahia Interior Forests, Caatinga, and Campos
Rupestres Montane Savanna, but a negative association
in the Araucaria Moist Forests, Bahia Coastal Forests, Per-
nambuco Coastal Forests, and Uruguayan Savanna (Fig. 4;
Suppl. material 1: fig. S7). Our analysis of potential circulari-
ty between the richness map and the environmental hetero-
geneity variables revealed that only 27 (5.8%) species had
a high correlation between species suitability and tempera-
ture seasonality (Suppl. material 1: fig. S8). The richness
pattern of these particular species was slightly higher in the
southwest region of the study area, but they represented
only a small portion of the total richness in that region (Sup-
pl. material 1: fig. S9). This further suggests that, if present,
the potential circularity from using similar variables in the
distribution and richness modeling should be minimal.

Discussion

In this study, we sought to describe the patterns of bee
diversity in the Atlantic Forest and to investigate the in-
fluence of different environmental heterogeneity variables
on species richness, both for the entire biome and each
of its ecoregions. We found that bee richness was higher
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in the southern and southwestern regions of the Atlantic
Forest and that temperature seasonality and topograph-
ic heterogeneity together partly explain these patterns.
However, we found that the relationship between species
richness and each of the features of environmental het-
erogeneity that we explored varied among ecoregions.
This nonstationarity indicates that the relationship be-
tween environmental heterogeneity and bee richness is
not spatially homogenous and that some environmental
features may be more important for determining species
richness in some regions than others (Foody 2004; Eme
et al. 2015). Changes in the relationship between biodi-
versity features and predictor variables at different spatial
scales are frequent in spatial ecology (Wang et al. 2012;
Eme et al. 2015; Yeager et al. 2017). Understanding how
biodiversity relates to the environment at different scales
(e.g., biome, ecoregion, and sub-ecoregions) can reveal
underlying mechanisms that drive biodiversity patterns in
various landscapes. This reinforces the need to comple-
ment global analyses of species richness patterns with
ecoregion- or landscape-specific assessments to under-
stand richness patterns more deeply (Wang et al. 2012).
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Patterns of estimated bee species richness were con-
sistent with patterns observed for other taxonomic groups.
For example, the regional hotspots of bee richness (i.e.,
the southwestern region of the Atlantic Forest) coincide
with high concentrations of bird, mammal, and amphibi-
an species (Jenkins et al. 2015); phylogenetic diversity of
Opiliones (Arachnida) (Nogueira et al. 2019); and endem-
ic species of amphibians, reptiles, birds, and mammals
(Brown et al. 2020; Figueiredo et al. 2021). The general
pattern of bee richness also coincides with that of woody
plants (Lira-Noriega et al. 2017; Zwiener et al. 2017). Inter-
preting bee richness patterns demands consideration of
the specific geographic and ecological context, especially
in transitional zones. We found contrasting scenarios like
disjunct Cerrado fragments within the Atlantic Forest (e.g.,
near to north Araucaria Moist Forest) supporting substan-
tial bee richness, while Atlantic Forest within the Cerrado
(e.g., upper portion of the Upper Parana Atlantic Forest)
showed reduced richness. These patterns suggest that
geographic proximity to the Atlantic Forest core may in-
fluence local species composition. Nonetheless, richness
pattern for the Cerrado and Caatinga ecoregions should
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be strictly limited to the context of this research. Extrap-
olation to the totality of these ecoregions is inappropriate
because our analysis encompassed only portions of these
vast areas that were merged with other smaller ecore-
gions within our study biome (Suppl. material 1: table S1).

We found that temperature seasonality was the mostim-
portant feature of environmental heterogeneity for bee spe-
cies richness across the Atlantic Forest biome and within
some of its ecoregions. Surprisingly, for most ecoregions (7
of 11), temperature seasonality had a positive relationship
with bee speciesrichness. However, this relationship has not
been commonly observed in other organisms. For bats and
marsupials in the Atlantic Forest, temperature seasonality is
negatively associated with species richness (Stevens 2013;
Weber and Céaceres 2018; Delciellos et al. 2022), as well as
endogenous fungi from Panama (Oita et al. 2021). Never-
theless, previous research has shown that global-scale
plant richness is positively associated with temperature
seasonality (Tietje et al. 2022). A probable explanation for
the positive relationship between temperature seasonality
and species richness is that sites with greater temperature
seasonality throughout the year can avoid competitive ex-
clusion and harbor a greater number of species niches in
different seasons (Tonkin et al. 2017). Seasonal variation is
directly linked to plant phenology, affecting flowering and,
consequently, resource availability (Escobedo-Kenefic et al.
2020), which influences pollinator diversity.

Topographic and geomorphic heterogeneity showed
positive relationships with bee species richness for the en-
tire Atlantic Forest biome as well as several ecoregions in
which these environmental features demonstrated high ex-
planatory power. Topographic heterogeneity is important
for maintaining biodiversity in the Atlantic Forest (Delci-
ellos et al. 2022). Topographic and geomorphic heteroge-
neities are related to terrain complexity. As both variables
increase, a diverse set of microclimates, vegetation types,
and nesting and trophic opportunities for bees are expect-
ed (Tukiainen et al. 2019; Doherty et al. 2021; Cavigliasso
et al. 2022; Pardee et al. 2023). Steep slopes, valleys, and
varying elevations contribute to a mosaic of habitats, each
supporting different plant communities, as is the case in
the southwest Atlantic Forest, which has the greatest rich-
ness of tree species and significant changes in composi-
tion. (Zwiener et al. 2017; Rodrigues et al. 2019). Thus, a
high diversity of plants can provide various essential food
resources for bees (Cavigliasso et al. 2022; Dzekashu et
al. 2022; Felderhoff et al. 2023). In addition, variations in
microclimates created by topography can promote the co-
existence of species with different environmental needs,
resulting in greater ecological complexity in areas with
more rugged terrain (Muscarella et al. 2020).

Stream density is a relatively understudied variable com-
pared to other metrics of environmental heterogeneity, such
as those related to topography or climate. Although water
is a fundamental resource for bees (Rankin et al. 2020; Ro-
sa-Fontana et al. 2020; McCune et al. 2021), we found a
weak relationship between bee richness and stream density.
One likely explanation is that, unlike other organisms, their
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main needs are the availability of floral resources (Vaudo et
al. 2015) and nesting sites (Requier and Leonhardt 2020).
However, certain species of bees use water to build nests or
regulate temperature within their colonies (Stabentheiner et
al. 2010; Stabentheiner et al. 2021). In tropical forests, such
as the Atlantic Forest, humidity and high rainfall increase the
abundance of floral resources, correlating with greater bee
activity, indicating that humidity levels increase foraging op-
portunities (Silva et al. 2011; Marques et al. 2018). Another
probable explanation for this finding is related to the nature
of the stream density variable, as it represents potential wa-
tercourses, i.e., watercourses that may not exist permanent-
ly. Thus, these variables do not distinguish intermittent wa-
tercourses from permanent watercourses, especially in the
drier regions of the Atlantic Forest (i.e., northeastern Brazil).

Despite the importance of seasonal temperature, topo-
graphic, and geomorphic heterogeneity in the Atlantic Forest
biome and some ecoregions, these variables demonstrat-
ed relatively low explanatory power in ecoregions with the
highest species richness, such as the Serra do Mar Coastal
Forests and Araucaria Moist Forests. Previous research has
shown that the distribution of species richness in areas char-
acterized by especially high diversity cannot be explained by
environmental heterogeneity alone (Chang et al. 2023). This
finding emphasizes the importance of variables or mecha-
nisms beyond those explained by environmental diversity in
determining the diversity patterns of these ecoregions. For
example, the Serra do Mar Coastal Forests and Araucaria
Moist Forests may harbor high historical climatic stability,
promoting favorable conditions for the survival of older spe-
cies lineages and the emergence of new ones (speciation)
(Carnaval et al. 2014; Brown et al. 2020). Globally, solar
radiation and precipitation are important variables that ex-
plain bee diversity patterns (Orr et al. 2021), making them
interesting to be explored at smaller spatial scales Anoth-
er crucial factor could be the quality and availability of re-
sources, such as floral sources for bees throughout the year,
which are essential for maintaining bee diversity (Vaudo et
al. 2015; Flo et al. 2018; Klaus et al. 2021). Given the high
elevational gradient of the Serra do Mar coastal forest, the
low explanatory power in this ecoregion could be related to
the spatial resolution of SDM and variables, which may have
been too coarse to capture the real variability of the region.
Further studies are required to explore other drivers of bee
species richness in these regions.

Environmental heterogeneity is increasingly being recog-
nized as an important component in maintaining biodiversi-
ty (Knudson et al. 2018; Gordon et al. 2022). Conservation
efforts in regions with high environmental heterogeneity
have been emphasized to enhance biodiversity conserva-
tion because environmental heterogeneity can serve as a
proxy for biodiversity (Beier and De Albuquerque 2015; Gor-
don et al. 2022; Maliniemi et al. 2024). Our results indicated
that different components of environmental heterogeneity
(temperature seasonality, topographic, and geomorphic het-
erogeneity) play important roles in determining bee species
richness in the Atlantic Forest. Because the relationship be-
tween environmental heterogeneity and bee richness was
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specific to each ecoregion, and each ecoregion likely hosts
different species compositions, ecoregion-specific conser-
vation approaches may promote bee conservation through-
out the Atlantic Forest. In regions where temperature sea-
sonality was the most important predictor of richness, such
as the Cerrado and the Uruguayan Savanna, promoting the
conservation of bee habitats that capture climatic gradients
may be fundamental for the persistence of local commu-
nities. Interestingly, the Serra do Mar Coastal Forests were
one of the ecoregions with the highest biodiversity of bees.
This ecoregion hosts one of the largest forest remnants of
the Atlantic Forest and has been highlighted as a region to
expand the current protected areas for amphibians, birds,
and plants (Campos et al. 2017; Zwiener et al. 2017; Vale et
al. 2018). Because of the large deforestation suffered in the
Atlantic Forest, itis necessary to restore areas in ecoregions,
such as the Araucaria Moist Forest, Upper Parana Atlantic
Forests, and Cerrado, which have a high biodiversity of bees
and other organisms (Zwiener et al. 2017; Crouzeilles et al.
2020; Velazco et al. 2023). Further research could evaluate
the contribution of anthropic land cover to the loss of spe-
cies range and identify priority areas for bee conservation.
The limitations of this study are largely related to the intrin-
sic complexity of the bee group and the ecological variation
across bee species in the Atlantic Forest. These species
cover a range of different life histories and habitat require-
ments, making the standardization of occurrence data and
generalizability of results particularly challenging. Obtain-
ing occurrence data for bees, and arthropods more broadly,
is especially difficult in areas that are not easily accessible.
The lack of data for these organisms makes the estimation
of species distributions impossible in some cases, which
may influence the resulting richness estimates.

Conclusion

Bee species richness was highest in the Serra do Mar
Coastal Forests and Araucaria Moist Forest ecoregions,
while the coastal regions of the northeast (e.g., the Per-
nambuco Coastal Forests) and drier inland areas (e.g., the
Caatinga and Bahia Inland Forests) showed the lowest
diversity. Temperature seasonality emerged as the most
important variable explaining species richness, showing a
positive relationship with bee richness in most ecoregions.
Topographic and geomorphic heterogeneities also play
an important role in determining bee richness patterns in
some parts of the Atlantic Forest. Moreover, stream density
was poorly correlated with richness patterns. We found
that the relationship between environmental heterogene-
ity variables and bee species richness varied substantially
between ecoregions. This finding reinforces the need to
study diversity patterns at multiple spatial scales to high-
light the nuanced drivers of species diversity within each
ecoregion. Interestingly, in ecoregions with the highest bee
species richness, aspects of environmental heterogeneity
showed low explanatory power, suggesting that other fac-
tors are the primary determinants of local biodiversity.
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