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Abstract
1.	 Abundance-based species distribution models (ADM) correlate species abun-

dance with environmental data to model and project abundance throughout 
space or time. This promising and still developing technique has gained significant 
attention in recent years.

2.	 Here, we present the adm R package developed to support the construction of 
ADM, including data preparation, model fitting, prediction and model explora-
tion. This package offers several modelling approaches (i.e. algorithms) that can 
be fine-tuned and customized. Models can be predicted in geographic space and 
explored regarding performance and response curves. Because modelling work-
flows in adm are constructed based on a combination of distinct functions and 
simple outputs, adm can be easily integrated into other packages. To illustrate 
this, we constructed a full modelling procedure for the shrub species Cynophalla 
retusa using adm.

3.	 To date, adm provides 35 functions in three categories, (i) modelling: to tune, 
fit and validate models with nine different algorithms, with a suite of possible 
model-specific hyperparameters; (ii) post-modelling: to predict abundance across 
space and construct partial dependence plots to explore the relationships be-
tween abundance and environmental predictors; and (iii) miscellaneous tools: to 
support the workflow in all steps, including data handling, transformations and 
hyperparameter selection.

4.	 With adm, we intend to provide a flexible, straightforward and concise toolbox 
for ADM construction and expect it to help users develop and leverage the prom-
ising ADM field.

K E Y W O R D S
artificial neural networks, correlative models, model tuning, spatial ecology, species abundance 
models, species distribution models
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1  |  INTRODUC TION

Spatially explicit ecological models are an important approach in 
many research areas because they consider how spatially structured 
characteristics and constraints influence the modelled phenomena 
(DeAngelis & Yurek,  2017). One of the most widely used strate-
gies for estimating species geographic distributions is the species 
distribution model (SDM, also known as ecological niche models 
or habitat suitability models). This technique uses occurrence data 
and environmental variables to model the environmental suitability 
or occurrence probability of a species and predict its distribution 
(Franklin,  2023). Despite the importance of SDM in ecology and 
conservation, other important ecological aspects, such as popula-
tion density and trends, are often not modelled because of the lack 
of data (Hastings et al., 2020).

Abundance-based species distribution models (ADM) have re-
cently been recognized as a distinct class of models (see Waldock 
et al., 2022); however, they were also commonly referred to as “SDM 
fitted with abundance data” or “Species Abundance Models” (e.g. 
García-Gómez et al., 2023; Kroetz et al., 2025). ADM are similar to 
SDM, as both are spatially explicit correlative models; however, they 
model and project abundance throughout space or time by correlat-
ing species abundance and environmental data (Anadón et al., 2010; 
Ehrlén & Morris, 2015; Yu et al., 2020). Predictions of species abun-
dance are useful for assessing extinction risk, estimating the effects 
of climate and land-use change, understanding the environmental 
drivers of species abundance and performing conservation priori-
tization analysis (Villén-Pérez et al., 2020). Nonetheless, ADMs re-
main less developed than SDMs (Waldock et al., 2022), except for 
N-mixture models, which are appropriate for multiple visit abun-
dance data. A few R packages support ADM fitting, tuning, evalu-
ation and prediction, and most use only a few algorithms (Tables S1 
and S2). Using multiple algorithms and performing hyperparameters 
tuning is crucial for diversifying species abundance modelling ap-
proaches and enabling selection of the best models or accounting 
for model uncertainty (Qiao et al., 2015; Thuiller et al., 2019).

Here, we introduce adm, a new R package designed to facili-
tate the development of ADM workflows. adm is one of the only 
packages offering fitting, tuning and model exploration of different 
modelling approaches, from generalized linear and additive models 
(GLM and GAM) (Rigby & Stasinopoulos,  2005) to different types 
of artificial neural networks (NET) implemented with torch (Falbel & 
Luraschi, 2024), which provide high architectural customization, na-
tive GPU (graphics processing unit) acceleration and more complex 
setups. Furthermore, adm is structured to support modelling work-
flows that can be easily integrated with other R packages.

2  |  PACK AGE OVERVIE W

adm was inspired by the philosophy of the flexsdm R package, which 
enables users to build flexible modelling workflows by combining 
user-selected functions that return widely used R objects such as terra 

SpatRaster and tidyverse tibbles (Velazco et al., 2022). Furthermore, 
adm works as an independent extension of flexsdm, offering features 
adapted to abundance modelling. adm features can be used alone 
or integrated with flexsdm features, for example, various data 
partitioning approaches for model fitting and validation (k-fold, 
bootstrap or environmental and geographically structured partition), 
model calibration area delimitation, measuring model extrapolation 
and performing model truncation (Velazco et al., 2024). Building on 
the advances in developing conventional SDM, the integration of 
adm and flexsdm will improve the development of state-of-the-art 
ADM workflows.

Currently, adm provides 35 functions divided into three catego-
ries: modelling, post-modelling and miscellaneous tools (Figure  1). 
Modelling abundance is more challenging than modelling presence-
absence because abundance can be measured in different ways (e.g. 
plot coverage percentage or absolute abundance). Therefore, adm 
is designed to handle different types of response variables by (i) 
offering different probability distributions for different algorithms, 
(ii) selecting suitable distributions based on response variable na-
ture for GLM and GAM (family_selector function) or (iii) performing 
data transformations with different methods (adm_transform func-
tion). Additionally, adm does not create any new R object classes; 
rather, most function outputs are simple R lists (i.e. heterogeneous 
vectors that can contain different object classes, e.g. lists, tibbles, 
rasters and vectors). For instance, in the modelling functions, the 
outputs comprise an object of the original modelling framework and 
additional informative and useful tabular data. The simplicity of the 
adm's output allows users to manipulate and explore results, making 
them more compatible with other packages.

3  |  MODELLING FUNC TIONS

Selecting a modelling algorithm is a crucial step in developing 
a predictive model for species abundance and requires an 
understanding of the model assumptions and functionality. This 
can be a challenging task, and it is often recommended to test 
multiple algorithms (Qiao et  al.,  2015). adm facilitates modelling, 
hyperparameter tuning and validation of nine algorithms (Table S3), 
grouped into two function types, denoted by fit_abund and tune_
abund prefixes. Both fit_abund and tune_abund validate models 
internally (see Table S3, full list of algorithms and hyperparameters).

fit_abund functions allow users to fit algorithms with default 
or user-specified hyperparameter values. However, tuning model 
hyperparameters influences algorithm performance and complex-
ity and is therefore an important consideration when developing 
conventional SDMs (Fourcade,  2021). Choosing the optimal hy-
perparameter values for the data and modelling objective can 
significantly enhance model performance. Functions with the 
tune_abund prefix allow users to perform model tuning by using 
an array of model-specific hyperparameters. In adm, tuning is 
performed using a grid-search approach, that is, by evaluating 
model performance under an array of possible hyperparameter 
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    |  3de OLIVEIRA JUNIOR and VELAZCO

combinations. To implement this approach, the user provides a 
data frame with hyperparameters as columns and the hyperpa-
rameter values to be tested as rows (Appendix S1). Model tuning 
functions then iterate through the available hyperparameter val-
ues and select the best-performing model and its associated hy-
perparameter values. To reduce computational time, tune_abund 
functions support parallel processing built with parallel (R Core 
Team, 2024), doParallel (Microsoft & Weston, 2022a) and foreach 
(Microsoft & Weston, 2022b) packages. It is possible to evaluate 
models using one or more performance metrics during the model 
tuning process. For instance, use one metric for different perfor-
mance metrics types. However, when using multiple performance 
metrics, their order is crucial because model_selection prioritises 
earlier metrics, sequentially selecting top-quartile models for 
each metric until a single model remains. Performance metrics for 
model evaluation are calculated using adm_eval (see below).

3.1  |  Generalized linear and additive models

GLM and GAM are expansions of linear models and enable the 
modelling of non-linear predictor-response relationships, even when 

the data are not normally distributed (Hastie & Tibshirani,  1986; 
Nelder & Wedderburn, 1972). GLM assumes that the relationships 
between predictor and response variables are mediated by a link 
function that allows using different probability distributions (Nelder 
& Wedderburn,  1972). GAM uses a link and smoothing function, 
which captures non-linear relationships between response and 
predictor variables (Hastie & Tibshirani,  1986). In adm, GLM and 
GAM are based on the Generalized Additive Models for Location, 
Space and Shape framework (GAMLSS), using the gamlss package 
(Rigby & Stasinopoulos,  2005). GAMLSS offers >100 probability 
distributions that fit different types of response variables (e.g. 
between 0 and 1, discrete positive, zero-inflated; Figure  S1) and 
the possibility of modelling any parameter that defines a family 
distribution (Stasinopoulos & Rigby,  2012). However, users should 
be aware that not every available distribution family is necessarily 
appropriate for modelling abundance. Therefore, the choice of 
distribution should be carefully considered and grounded in prior 
assumptions. In adm, users can fit GLM and GAM models using all 
the distribution families supported by gamlss (Figure S1). However, it 
is worth noting that the response variable must respect the family's 
assumptions; tune_abund_glm and tune_abund_gam automatically 
select the most suitable families if they are not provided within 

F I G U R E  1  Overview of adm package functions structured in modelling (fitting and validation), post-modelling (model predictions and 
exploratory plots) and various utilities to support modelling workflows.
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4  |    de OLIVEIRA JUNIOR and VELAZCO

the user-specified grid. GLM can be parameterized with different 
interaction orders between explanatory variables and the degree 
of polynomials. For GAM, users can control the smoothness degree 
used in a formula. For the GLM and GAM, parameters that define 
a distribution (i.e. sigma, nu and tau) can be modelled based on 
predictor variables.

3.2  |  Generalized boosted regression models and 
extreme gradient boosting

Boosting algorithms are machine learning algorithms that 
sequentially train small models, each one improving upon the errors 
of the previous model, which is known as ‘boosting’ (Friedman 
et al., 2000; Friedman, 2001, 2002). In adm, boosting algorithms are 
supported in two different expansions and implementations of the 
original modelling framework (Friedman et al., 2000; Friedman, 2001, 
2002), generalized boosted regression model (GBM) and extreme 
gradient boosting (XGB), via gbm and xgboost packages, respectively 
(Chen et  al.,  2024; Greg & G.B.M. Developers,  2024). Both are 
set to use trees as boosters but have significant differences in 
gradient computation, hyperparameters, overfitting prevention and 
regression tree construction (Chen & Guestrin,  2016) (Figures  S2 
and S3). The user can tune hyperparameters, such as tree depth and 
learning rate (Table S3).

3.3  |  Random forest

Random forest (RAF) is a machine learning algorithm based on the 
ensemble of multiple decision trees trained with a bootstrapped 
version of the original dataset and predictors subset (Breiman, 2001). 
RAF has been widely used in ecology and distribution modelling, 
generally obtaining good performance, even with small datasets 
(Pichler & Hartig,  2023; Valavi et  al.,  2022). The algorithm was 
implemented via the randomForest package (Liaw & Wiener, 2002). 
Here, the user can set the number of trees grown in the forest and 
the number of predictors used for each decision tree (Table S3).

3.4  |  Support vector machine

Support vector machine (SVM) is a machine learning algorithm that 
aims to define an optimal hyperplane determined by non-linear 
decision boundaries that split samples into different classes within 
a higher-dimensional space (Salcedo-Sanz et  al.,  2014). SVM was 
implemented using the kernlab package (Karatzoglou et  al., 2004). 
SVM's adm function is set up to perform (epsilon) regressions, and 
the user can set the desired kernel, its parameters and the constraint 
violation cost (Table S3). SVM is adapted to work with Radial Basis 
and Laplacian kernels, but the user can experiment with different 
kernels and configurations; in which case, it is recommended to read 
the kernlab documentation.

3.5  |  Artificial neural networks, deep neural 
networks and convolutional neural networks

Neural Networks are systems composed of interconnected neurons 
capable of learning complex non-linear data relationships. These 
neurons are organized into one or multiple layers called hidden 
layers (Alzubaidi et  al.,  2021). When a network features multiple 
serialized hidden layers, it is often called a deep neural network 
(DNN) (Alom et al., 2019). In this case, networks can be constructed 
with several architectures, combining multiple types of neurons, 
layers and functions (Pouyanfar et al., 2019). We refer to DNN as a 
fully connected, feedforward, backpropagation and artificial neuron 
network, which is the most common type of deep network (Alom 
et  al.,  2019). The neuron receives inputs, performs a weighted 
operation and feeds forward a value transformed by an activation 
function to the next layer (Schmidhuber,  2015). When a neural 
network features a single hidden layer, it can be called a Shallow 
Neural Network (Podder et al., 2021), referred to as NET herein and 
in adm documentation. These networks function similarly to DNN, 
but are less computationally intensive, although they perform well 
(Winkler & Le, 2017). Other common structures are the convolutional 
neural networks (CNN), which have filters or kernels that perform 
convolution operations across large multidimensional data matrices. 
This process sequentially generates “activation maps” between the 
layers, which allows the network to learn complex features from 
the data (Alzubaidi et  al.,  2021). Although there are no rules for 
their construction, excessively deep and large neural networks of 
any type tend to overfit (Pichler & Hartig, 2023). In ecology, these 
techniques have gained significant attention, encompassing a wide 
range of applications, including regressions and distribution models 
(Borowiec et al., 2022; Pichler & Hartig, 2023).

For DNN and CNN, adm uses the torch framework for R (Falbel & 
Luraschi, 2024). This allows the construction of highly customizable 
architectures, with the size and number of layers defined by the user. 
NET is based on the nnet package (Venables et al., 2002), which is a 
single-layer and less customizable option; however, it is much faster 
than DNN and CNN.

adm provides functions to help define the size and number of lay-
ers for constructing CNN and DNN. generate_dnn_architecture and 
generate_cnn_architecture functions help to easily construct neural 
networks. To facilitate the tuning process, the generate_arch_list 
function builds multiple architectures with different layer configura-
tions. To systematically sample these architectures, select_arch_list 
can be used to reduce the list of architectures while maintaining a 
range of characteristics. In addition, users can manually construct 
a neural network using torch package syntax and use it within fit_
abund and tune_abund functions.

3.6  |  Model performance metrics adm_eval

Model evaluation metrics are calculated using the adm_eval function, 
which is implemented internally in the fit_adm and tune_adm 
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    |  5de OLIVEIRA JUNIOR and VELAZCO

functions. adm_eval returns a tibble with results for six performance 
metrics calculated between observed and predicted data (Table 1), 
based on Waldock et  al.  (2022): (i) Spearman's and (ii) Pearson's 
correlations, (iii) Mean Absolute Error, which consists of the absolute 
value of the average residual, (iv) Intercept and (v) Slope of a linear 
model fitted with observed abundance as a function of predicted 
abundance and (vi) Dispersion, calculated as the ratio between the 
standard deviation of predicted and observed abundance.

4  |  POST-MODELLING FUNC TIONS

4.1  |  Model prediction

In adm, spatial predictions for all algorithms are performed using 
adm_predict, using rasterized predictor variables as input. This 
function can simultaneously predict multiple models with prediction 
transformation, accounting for negative and scale-transformed 
values. Transforming negative values can be useful for algorithms 
that do not specify a statistical distribution (e.g. some machine 
learning approaches).

4.2  |  Partial dependence plot and partial bivariate 
dependence plots

Partial dependence plots allow for the exploration of marginal 
response curves by linearly varying the values of one predictor while 
maintaining other constants. In adm, partial dependence plots and 
their bivariate version can easily be constructed with p_abund_pdp 
and p_abund_bpdp, which return a ggplot2 object (Wickham, 2016). 
Both functions require only the output of tune_ and fit_ functions.

5  |  MISCELL ANEOUS TOOL S

5.1  |  Dataset and variable manipulation

Models and predictions can be constructed by transforming response 
and predictor variables. To facilitate this process, adm_transform can 
scale predictor variables in rasters or response variables in a table. It 

can also return the values to the original scale if necessary. Because 
algorithms are sensitive to the number of zeros (Barbet-Massin 
et  al.,  2012; Liu et  al.,  2019), the balance_dataset can be used to 
perform absence data thinning by randomly selecting absences to 
equilibrate the number of presences and absences to a given ratio.

5.2  |  Additional tools

Several other adm functionalities can be useful in the modelling 
workflow. family_selector identifies suitable distribution families to 
use in GAM and GLM based on the range and type of response variable 
(Figure S1). model_selection iterates over the performances dataset 
of a given model to select the best-performing hyperparameter 
combination based on user-defined performance metrics. model_
selection is implemented in each tune_abund_ function, but users 
can utilize it independently, for example, to reselect the best 
hyperparameter combination based on different metrics, without 
the need to tune the model again. adm_summarize concatenates 
performance tables from different models into one single table.

6  |  E X AMPLE

We illustrate the use of adm and its integration with flexsdm 
(Velazco et  al.,  2022) by modelling the abundance of Cynophalla 
retusa (Griseb.) Cornejo & Iltis (Capparaceae) (Appendix  S2; de 
Oliveira Junior & Velazco, 2025). It is a shrub native to northeastern 
Argentina, Paraguay, Bolivia and central Brazil, and is distributed 
mainly in dry biomes. We compiled and standardized data from the 
first (1998–2002) and second (2020) national forestry surveys in 
Argentina (MAyDS, 2022; SAyDS, 2005), constructing an abundance 
(individuals/ha) and absence dataset (sites with 0 individuals/ha). 
Using the adm::balance_dataset, we balanced presence (sites with 
>0 individuals/hectare) and absence at a 1:1 ratio. The absences 
were limited to the species training area, constructed as a 200-km 
buffered minimum convex polygon around presence points, using 
flexsdm::calib_area. We performed a principal component analysis 
using flexsdm::correct_colinvar, with 35 climatic and edaphic variables 
(Table S4), and selected the first seven principal components that 
represented >90% of cumulative variance as predictors (Table S5). 
To perform model validation accounting for models' spatial 
transferability (Roberts et  al.,  2017), we partitioned the dataset 
into three spatial blocks using flexsdm::part_sblock. To construct the 
models, we used DNN, RAF and GLM algorithms, fitted and validated 
by adm::tune_abund_dnn, adm::tune_abund_raf and adm::tune_
abund_glm, aiming to maximize both Pearson's correlation and MAE 
(Table  S6). Because DNN often performs better with scaled data 
(LeCun et  al.,  1998), input response data were standardized by Z-
score using adm::adm_transform before fitting this algorithm and all 
architectures tested featured batch normalization between layers, 
generated with adm::generate_arch_list. Predictions were generated, 
restricted to the species calibration area, with adm::adm_predict. 

TA B L E  1  Model performance metrics, acronyms and their 
characteristics.

Metric Acronym Range Type

Spearman correlation corr_spear
[

− 1, 1
]

Discrimination

Pearson correlation corr_pear
[

− 1, 1
]

Slope slope ( − ∞ , + ∞)

Intercept inter ( − ∞ , + ∞)

Mean absolute error mae
[

0, + ∞) Accuracy

Dispersion pdisp
[

0, + ∞) Precision
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6  |    de OLIVEIRA JUNIOR and VELAZCO

To explore how models extrapolate, we produced bivariate partial 
dependence plots with adm::p_abund_bpdp, taking as an example the 
first and seventh principal components (Figure 2; Figures S4–S9 for 
all bivariate and univariate partial dependence plots). Comprehensive 
functions documentation and illustrative examples are available on 
the adm website (https://​sjeve​lazco.​github.​io/​adm/​). The package is 
available on GitHub (https://​github.​com/​sjeve​lazco/​​adm).

7  |  CONCLUSION

The adm R package provides functions to construct a full workflow 
to model and predict species abundance in the geographic and 
environmental space. We highlight the possibility of using a variety 

of highly customizable algorithms and provide several functions for 
predicting and exploring ADMs. The complete integration of adm with 
flexsdm creates a holistic environment for modelling conventional 
species' presence-absence and species' abundance, allowing users to 
seamlessly combine and compare both approaches. In the future, we 
aim to expand adm's features by implementing algorithm ensembles, 
ensembles of small models (Breiner et  al.,  2015), new algorithms, 
variable importance and other evaluation metrics. We expect that 
adm will help users to further develop the promising ADM field by 
providing a flexible, straightforward, integrated and concise toolbox.
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F I G U R E  2  Abundance-based species distribution model for Cynophalla retusa predicted by generalized linear models (GLM), random 
forest (RAF) and deep neural networks (DNN). (a) Abundance maps predicted by each algorithm within training area. Predictions were 
classified into intervals to facilitate visualization. (b) Partial bivariate dependence plots for each model. White polygon in b represents the 
range of environmental conditions explored by abundance data.
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